Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies

Identifieur interne : 002C61 ( Main/Exploration ); précédent : 002C60; suivant : 002C62

Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies

Auteurs : Junwu Zhu [Australie, République populaire de Chine] ; Chi Cheng [Australie] ; Xiaowei Yang [Australie] ; Yufei Wang [Australie] ; Ling Qiu [Australie] ; Dan Li [Australie, États-Unis]

Source :

RBID : ISTEX:7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A

English descriptors

Abstract

Restacking of graphene sheets to a graphite‐like structure is a prevailing problem that is known to compromise the performance of individual graphene sheets in an assembled bulk form. To address this common problem efficiently and monitor the structure and quality of graphene products comprehensively, it is highly desirable to develop reliable metrology techniques for characterising graphene‐based materials on a bulk assembly level and in a quantitative manner. Here, by revisiting the physicochemical principle of electrosorption, we propose a simple electrochemical approach, namely dynamic electrosorption analysis (DEA), as an easily accessible and effective technique for evaluation of the self‐stacking behaviour of graphene. Taking multilayered chemically converted graphene films as a model, we demonstrate that the DEA technique can effectively reveal very subtle variation in accessible surface area and pore size of graphene assemblies in the liquid phase and thus can provide useful insights to the experimental design relating to restacking control. This work also reveals the huge effect some routine processing conditions, such as heat treatment and drying, can have on the structure and performance of graphene‐based bulk materials, providing useful guidance for future manufacturing of this class of materials.

Url:
DOI: 10.1002/chem.201203219


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies</title>
<author>
<name sortKey="Zhu, Junwu" sort="Zhu, Junwu" uniqKey="Zhu J" first="Junwu" last="Zhu">Junwu Zhu</name>
</author>
<author>
<name sortKey="Cheng, Chi" sort="Cheng, Chi" uniqKey="Cheng C" first="Chi" last="Cheng">Chi Cheng</name>
</author>
<author>
<name sortKey="Yang, Xiaowei" sort="Yang, Xiaowei" uniqKey="Yang X" first="Xiaowei" last="Yang">Xiaowei Yang</name>
</author>
<author>
<name sortKey="Wang, Yufei" sort="Wang, Yufei" uniqKey="Wang Y" first="Yufei" last="Wang">Yufei Wang</name>
</author>
<author>
<name sortKey="Qiu, Ling" sort="Qiu, Ling" uniqKey="Qiu L" first="Ling" last="Qiu">Ling Qiu</name>
</author>
<author>
<name sortKey="Li, Dan" sort="Li, Dan" uniqKey="Li D" first="Dan" last="Li">Dan Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/chem.201203219</idno>
<idno type="url">https://api.istex.fr/document/7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003D01</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003D01</idno>
<idno type="wicri:Area/Istex/Curation">003D01</idno>
<idno type="wicri:Area/Istex/Checkpoint">000814</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000814</idno>
<idno type="wicri:doubleKey">0947-6539:2013:Zhu J:dynamic:electrosorption:analysis</idno>
<idno type="wicri:Area/Main/Merge">002C73</idno>
<idno type="wicri:Area/Main/Curation">002C61</idno>
<idno type="wicri:Area/Main/Exploration">002C61</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies</title>
<author>
<name sortKey="Zhu, Junwu" sort="Zhu, Junwu" uniqKey="Zhu J" first="Junwu" last="Zhu">Junwu Zhu</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Materials Engineering, Monash University</wicri:regionArea>
<wicri:noRegion>Monash University</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education</wicri:regionArea>
<wicri:noRegion>Ministry of Education</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Chi" sort="Cheng, Chi" uniqKey="Cheng C" first="Chi" last="Cheng">Chi Cheng</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Materials Engineering, Monash University</wicri:regionArea>
<wicri:noRegion>Monash University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaowei" sort="Yang, Xiaowei" uniqKey="Yang X" first="Xiaowei" last="Yang">Xiaowei Yang</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Materials Engineering, Monash University</wicri:regionArea>
<wicri:noRegion>Monash University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yufei" sort="Wang, Yufei" uniqKey="Wang Y" first="Yufei" last="Wang">Yufei Wang</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Materials Engineering, Monash University</wicri:regionArea>
<wicri:noRegion>Monash University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Ling" sort="Qiu, Ling" uniqKey="Qiu L" first="Ling" last="Qiu">Ling Qiu</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Materials Engineering, Monash University</wicri:regionArea>
<wicri:noRegion>Monash University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Dan" sort="Li, Dan" uniqKey="Li D" first="Dan" last="Li">Dan Li</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Materials Engineering, Monash University</wicri:regionArea>
<wicri:noRegion>Monash University</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Correspondence address: Department of Materials Engineering, Monash University</wicri:regionArea>
<wicri:noRegion>Monash University</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Chemistry – A European Journal</title>
<title level="j" type="alt">CHEMISTRY - A EUROPEAN JOURNAL</title>
<idno type="ISSN">0947-6539</idno>
<idno type="eISSN">1521-3765</idno>
<imprint>
<biblScope unit="vol">19</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="3082">3082</biblScope>
<biblScope unit="page" to="3089">3089</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2013-02-25">2013-02-25</date>
</imprint>
<idno type="ISSN">0947-6539</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0947-6539</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accessible surface area</term>
<term>Adsorption</term>
<term>Ambient conditions</term>
<term>Annealed</term>
<term>Annealing</term>
<term>Aqueous solution</term>
<term>Assembly structure</term>
<term>Average pore size</term>
<term>Bulk forms</term>
<term>Bulk graphene assemblies</term>
<term>Bulk materials</term>
<term>Capacitance</term>
<term>Capacitance values</term>
<term>Carbon materials</term>
<term>Cellulose esters filter membrane</term>
<term>Certain amount</term>
<term>Characterisation</term>
<term>Characteristic relaxation time</term>
<term>Chem</term>
<term>Corrugation</term>
<term>Current density</term>
<term>Different level</term>
<term>Different temperatures</term>
<term>Dynamic electrosorption analysis</term>
<term>Effective method</term>
<term>Electrochemical</term>
<term>Electrochemical impedance spectroscopy</term>
<term>Electrolyte</term>
<term>Electrosorption</term>
<term>Elementary analysis</term>
<term>Emimbf4</term>
<term>Energy environ</term>
<term>Experimental design</term>
<term>Films annealed</term>
<term>Filter membrane</term>
<term>Filtration</term>
<term>Financial support</term>
<term>Frequency response</term>
<term>Ftir results</term>
<term>Full paper</term>
<term>Gmbh</term>
<term>Good agreement</term>
<term>Graphene</term>
<term>Graphene assemblies</term>
<term>Graphene films</term>
<term>Graphene oxide</term>
<term>Graphene product</term>
<term>Graphene sheets</term>
<term>Gravimetric capacitances</term>
<term>Hydrothermal</term>
<term>Hydrothermal treatment</term>
<term>Identical chemical structure</term>
<term>Kgaa</term>
<term>Liquid phase</term>
<term>Mater</term>
<term>Model system</term>
<term>Multilayered</term>
<term>Nano lett</term>
<term>Operation rate</term>
<term>Operation rates</term>
<term>Other hand</term>
<term>Pore</term>
<term>Pore size</term>
<term>Pore structure</term>
<term>Porous carbon</term>
<term>Porous structure</term>
<term>Power density</term>
<term>Quantitative manner</term>
<term>Restacking</term>
<term>Same amount</term>
<term>Samples annealed</term>
<term>Samples drop</term>
<term>Similar procedure</term>
<term>Structural difference</term>
<term>Structural variation</term>
<term>Subtle variation</term>
<term>Supercapacitors</term>
<term>Surface area</term>
<term>Thermal annealing</term>
<term>Vacuum filtration</term>
<term>Various hydrothermal temperatures</term>
<term>Various temperatures</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Weinheim</term>
<term>Weinheim chem</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Accessible surface area</term>
<term>Adsorption</term>
<term>Ambient conditions</term>
<term>Annealed</term>
<term>Annealing</term>
<term>Aqueous solution</term>
<term>Assembly structure</term>
<term>Average pore size</term>
<term>Bulk forms</term>
<term>Bulk graphene assemblies</term>
<term>Bulk materials</term>
<term>Capacitance</term>
<term>Capacitance values</term>
<term>Carbon materials</term>
<term>Cellulose esters filter membrane</term>
<term>Certain amount</term>
<term>Characterisation</term>
<term>Characteristic relaxation time</term>
<term>Chem</term>
<term>Corrugation</term>
<term>Current density</term>
<term>Different level</term>
<term>Different temperatures</term>
<term>Dynamic electrosorption analysis</term>
<term>Effective method</term>
<term>Electrochemical</term>
<term>Electrochemical impedance spectroscopy</term>
<term>Electrolyte</term>
<term>Electrosorption</term>
<term>Elementary analysis</term>
<term>Emimbf4</term>
<term>Energy environ</term>
<term>Experimental design</term>
<term>Films annealed</term>
<term>Filter membrane</term>
<term>Filtration</term>
<term>Financial support</term>
<term>Frequency response</term>
<term>Ftir results</term>
<term>Full paper</term>
<term>Gmbh</term>
<term>Good agreement</term>
<term>Graphene</term>
<term>Graphene assemblies</term>
<term>Graphene films</term>
<term>Graphene oxide</term>
<term>Graphene product</term>
<term>Graphene sheets</term>
<term>Gravimetric capacitances</term>
<term>Hydrothermal</term>
<term>Hydrothermal treatment</term>
<term>Identical chemical structure</term>
<term>Kgaa</term>
<term>Liquid phase</term>
<term>Mater</term>
<term>Model system</term>
<term>Multilayered</term>
<term>Nano lett</term>
<term>Operation rate</term>
<term>Operation rates</term>
<term>Other hand</term>
<term>Pore</term>
<term>Pore size</term>
<term>Pore structure</term>
<term>Porous carbon</term>
<term>Porous structure</term>
<term>Power density</term>
<term>Quantitative manner</term>
<term>Restacking</term>
<term>Same amount</term>
<term>Samples annealed</term>
<term>Samples drop</term>
<term>Similar procedure</term>
<term>Structural difference</term>
<term>Structural variation</term>
<term>Subtle variation</term>
<term>Supercapacitors</term>
<term>Surface area</term>
<term>Thermal annealing</term>
<term>Vacuum filtration</term>
<term>Various hydrothermal temperatures</term>
<term>Various temperatures</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Weinheim</term>
<term>Weinheim chem</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Restacking of graphene sheets to a graphite‐like structure is a prevailing problem that is known to compromise the performance of individual graphene sheets in an assembled bulk form. To address this common problem efficiently and monitor the structure and quality of graphene products comprehensively, it is highly desirable to develop reliable metrology techniques for characterising graphene‐based materials on a bulk assembly level and in a quantitative manner. Here, by revisiting the physicochemical principle of electrosorption, we propose a simple electrochemical approach, namely dynamic electrosorption analysis (DEA), as an easily accessible and effective technique for evaluation of the self‐stacking behaviour of graphene. Taking multilayered chemically converted graphene films as a model, we demonstrate that the DEA technique can effectively reveal very subtle variation in accessible surface area and pore size of graphene assemblies in the liquid phase and thus can provide useful insights to the experimental design relating to restacking control. This work also reveals the huge effect some routine processing conditions, such as heat treatment and drying, can have on the structure and performance of graphene‐based bulk materials, providing useful guidance for future manufacturing of this class of materials.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Zhu, Junwu" sort="Zhu, Junwu" uniqKey="Zhu J" first="Junwu" last="Zhu">Junwu Zhu</name>
</noRegion>
<name sortKey="Cheng, Chi" sort="Cheng, Chi" uniqKey="Cheng C" first="Chi" last="Cheng">Chi Cheng</name>
<name sortKey="Li, Dan" sort="Li, Dan" uniqKey="Li D" first="Dan" last="Li">Dan Li</name>
<name sortKey="Li, Dan" sort="Li, Dan" uniqKey="Li D" first="Dan" last="Li">Dan Li</name>
<name sortKey="Qiu, Ling" sort="Qiu, Ling" uniqKey="Qiu L" first="Ling" last="Qiu">Ling Qiu</name>
<name sortKey="Wang, Yufei" sort="Wang, Yufei" uniqKey="Wang Y" first="Yufei" last="Wang">Yufei Wang</name>
<name sortKey="Yang, Xiaowei" sort="Yang, Xiaowei" uniqKey="Yang X" first="Xiaowei" last="Yang">Xiaowei Yang</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhu, Junwu" sort="Zhu, Junwu" uniqKey="Zhu J" first="Junwu" last="Zhu">Junwu Zhu</name>
</noRegion>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Li, Dan" sort="Li, Dan" uniqKey="Li D" first="Dan" last="Li">Dan Li</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C61 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C61 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A
   |texte=   Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022